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Abstract. Arbitrary quantum states can be expanded with a very good accuracy in terms of
coherent states on a truncated von Neumann lattice. Optimization techniques are used to further
reduce the size of the basis, whilst still preserving the same degree of accuracy. Variousp-norms
are adopted as accuracy measures, which reflect different practical needs. Numerical examples
demonstrate that a significant reduction in the size of the basis can be achieved with optimization
techniques, without substantial loss of accuracy.

1. Introduction

One of the most important properties of coherent states is that they can be used as an
overcomplete basis in the Hilbert space. We consider the harmonic oscillator Hilbert spaceH

spanned by the number eigenstates{|N〉;N = 0, 1, 2 . . .} and the coherent states

|A〉 = exp

(
−|A|

2

2

) ∞∑
N=0

AN

(N !)1/2
|N〉 = D(A)|0〉 (1)

D(A) = exp[Aa†− A∗a] (2)

wherea†,a are the usual creation and annihilation operators.D(A) is the displacement operator
associated with the Heisenberg–Weyl group whose generators form the algebra [a, a†] = 1.
The resolution of the identity for these coherent states is∫

d2A

π
|A〉〈A| = I (3)

and can be used to expand an arbitrary (normalized) state|f 〉 as

|f 〉 =
∫

d2A

π
f (A)|A〉 f (A) = 〈A|f 〉. (4)

The above expansion uses all coherent states in the complex plane. It is well known that this set
of coherent states is highly overcomplete and that there are much smaller subsets of coherent
states which are also overcomplete. A well known overcomplete set of coherent states is the
von Neumann lattice. This is the set of coherent states

|AMK〉 = |αM + iβK〉 (5)
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whereM,K are integers andS = αβ is the lattice area. It is well known [1] that this set is
overcomplete ifS < π ; and undercomplete ifS > π .

In a recent paper [2], a truncated von Neumann lattice of coherent states was used for an
approximate construction of various quantum states. For any quantum state|f 〉, many of the
coherent states on a (full) von Neumann lattice are very far in phase space; and their overlap
with |f 〉 is very small. Neglecting them, we get a truncated von Neumann lattice, which
from a practical point of view is much easier to handle, and which is sufficient for an accurate
reconstruction of|f 〉. It has been found that this expansion is both accurate and robust (in the
sense that random noise in the coefficients weakly affects the constructed state).

More specifically, a truncated von Neumann lattice of coherent states is the set of states
of equation (5) with(M,K) a pair of integers which take values in a setI (which is a finite
subset ofZ×Z). We callI ′ the set of the rest of the values of the pair of integers(M,K) (i.e.
I ′ = Z × Z − I ). In order to have a good approximation, the setI should be chosen in such
a way that for all(M,K) ∈ I ′ we have:

〈f |AMK〉 � 1. (6)

One way of achieving this is by calculating the quantities〈x〉, 〈p〉,1x,1p, where as usual:

〈x〉 = 〈f |x̂|f 〉 (7)

〈x2〉 = 〈f |x2|f 〉 (8)

1x = [〈x2〉 − 〈x〉2]1/2 (9)

and similar definitions hold for the momentump. The setI contains all the values ofM,K
such that

〈x〉 − µ(1x) < αM < 〈x〉 +µ(1x) (10)

〈p〉 − µ′(1p) < βK < 〈x〉 +µ′(1p) (11)

where µ,µ′ are positive numbers. Clearly, the bigger theµ,µ′ are, the better the
approximation.

On the other hand, an expansion is practically useful if it can reconstruct the original state
accurately, witha few terms. While performing the numerical work presented in [2], it was
found that ‘cleverly selected’ subsets ofI (i.e. fewer coherent states) give results which are
almost as good as those with the full setI . In this paper we present some interdisciplinary
research, using optimization techniques to find these ‘cleverly selected’ subsets ofI . The
optimization reconciles the contradictive requirements of having only a few terms and at the
same time gives good accuracy. There are many powerful computer programs available which
perform general purpose optimization, but clearly they have not been written for our own
problem. In order to use them, we need to formulate our problem in their language.

In section 2 we rigorously express our problems in the language of optimization theory.
Mathematical formulations of these problems are derived using variousp-norms for various
definitions of accuracy, appropriate to different practical needs. Having done that, in section 3
we are able to use existing optimization programs in our own context. Numerical results are
presented in section 4. In section 5 we conclude with a discussion of our results and suggestions
for applications to other areas.

2. The optimization problem

In this section we express our problem in the language of optimization theory and explicitly
define the optimization problem that we solve.
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We start with a general optimization problem which can be formulated as follows. Given
a complex functionf (x) wherex ∈ R, and a discrete set ofN ‘basis’ functionsA(x) where
A(x) = (A1(x), A2(x), . . . , AN(x))

T (which are not necessarily orthogonal) find appropriate
weightsf = (f1, f2, . . . , fN)

T which minimize the error of approximation:

�(f) =
∥∥∥∥f (x)− N∑

i=1

fiAi(x)

∥∥∥∥
p

(12)

such that the following bounds are satisfied:

xL 6 x 6 xU range of the free variable (13)

fL 6 f 6 fU . bounds of the basis weight variables. (14)

The above formalism is general, but for our purposesN is expressed in terms of the lattice
size. The norm in equation (12) is defined as

‖g(x)‖p =
[ ∫ xU

xL
dx |g(x)|p

]1/p

. (15)

As p increases, the ‘worst points’ (i.e. the pointsx at which the difference|f (x) −∑N
i=1 fiAi(x)| is large) contribute more in the evaluation of�(f). In the casep→∞,

‖g(x)‖∞ = max
x
|g(x)| (16)

and

�(f) = max
x

∣∣∣∣f (x)− N∑
i=1

fiAi(x)

∣∣∣∣. (17)

In this case the above problem is a min–max optimization problem.
The value ofp depends on the application. Small values ofp are appropriate for

applications where the constructed quantum state should be ‘on average’ close to the desired
quantum state, and where large deviations in small regions ofx are of no particular importance.
Large values ofp are appropriate for applications where large deviations of the constructed
quantum state from the desired one, even at small regions ofx, can be catastrophic; while
small deviations are relatively harmless. In a more general context, error is the difference of
the approximation from the exact result, to a powerp. Large values ofp put a lot of weight to
large differences and are suitable for applications where large deviations from the exact result
are very harmful and very undesirable.

2.1. Use of a smaller basis

In several applications, the available ‘basis’ set is more than enough for the required accuracy,
and it is desirable, for reasons of simplicity and cost efficiency, to use just a small subset of
the original set. In this case, the objective is not only to choose optimally the weightsf , but
to enforce some of them only to be present, setting all others to zero.

It is noted that this choice should have no consequence on the formulation of the bounds
defined in equation (14), rather it will simply indicate that those bounds for non-participating
basis functions are set to zero, while for participating ones they are left free as defined.

To derive the general formulation for this problem, the number of participating basis
functions is defined to bēN 6 N and the optimal solution should include at mostN̄
basis functions in order to minimize any desired norm of the fitting error. In order to
do this we introduce the variablesyi (i = 1, 2, . . . , N) which take the values one or
zero according to whether the basis functionAi(x) will be included or not included in the
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expansion, correspondingly. To accommodate the corresponding bounds on the weights
fi a transformationwi = yifi is included in the formulation, wherewi will replace the
corresponding weightsfi in the norm. The new optimization (variational) problem is to
minimize the function

min
y,w

�(w) = min
y,w

∥∥∥∥f (x)− N∑
i=1

wiAi(x)

∥∥∥∥
p

(18)

subject to the bounds onx

xL 6 x 6 xU (19)

and the bounds on the weightswi

yif
L
i 6 wi 6 yif Ui i = 1, 2, . . . , N. (20)

It is clear from what has been said above that

N∑
i=1

yi = N̄ . (21)

The formulation presented in the model of equations (18)–(21) is the most general
formulation for the optimal choice of a subset of basis functions from a larger finite set.
It makes no assumptions regarding the norm used to express the objective function�(·) nor
regarding the nature of the variablex. Although a single free variable was chosen for simplicity,
it is always possible to include a vector of free variables (relevant to the case of multimode
quantum states). The reformulation of approximation problems as mathematical programming
models is known (e.g. [3]). [4] presented the use of a mixed-integer nonlinear formulation
to optimally select the parameters, and structure, of a model fitting experimental data with
applications to infrared spectroscopy. This work extends these ideas by generalizing the error
norms used, and introduces the application of this theory to quantum state engineering.

2.2. Discretization of the variablex

In many practical cases the functionf (x) is obtained experimentally at discrete values of
the variablex. Even if an analytic form of thef (x) is available, discretization of the
variablex might be necessary for numerical purposes (if the above minimization cannot
be performed analytically, being a variational problem in the general context). In these
situations some modification of the previous model is needed in order to take into account
the discrete nature ofx. The set of values ofx is considered to containNx points, such that
now x = (x1, x2, . . . , xNx )

T . These points are implicitly assumed to satisfy the bounds on
variablex. The new optimization problem is again described with equations (18)–(21) but the
p-norm which above was defined in terms of an integral, is here defined in terms of the sum

‖g(x)‖p =
[∑

j

|g(xj )|p(xj − xj−1)

]1/p

. (22)

In the case of a constant ‘discretization step’h, the above equation becomes

‖g(x)‖p =
[
h
∑
j

|g(xj )|p
]1/p

. (23)
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Figure 1. The 5× 5 truncated von Neumann lattice used for the construction of the squeezed state
described in the text. The optimally selected states are shown with a hexagon for the case of three
coherent states and with a circle for the case six coherent states.

3. Computational solution

The models formulated for the three norm casesp = 1, p = 2, andp = ∞ represent mixed
integer mathematical programming formulations. A standard approach applicable to such
problems is the use of the well known ‘branch and bound’ algorithms. These are efficient
algorithms that allow the search of the combinatorial tree of binary variables (or generally
integer variables) in such a way that the computational effort is usually far better than the
worst case (combinatorial complexity). An excellent survey of methods and formulation
applicable to mixed integer-linear programming problems can be found in [5]. The case of
mixed integer-nonlinear programming required to address the case ofp = 2 is addressed
through special algorithms. A review of these can be found in [6].

All runs were carried out using theGAMS mathematical programming package-language
[7], interfacing to the solversCPLEX (mixed integer-linear programming solver, using the
simplex algorithm with branch and bound on the binary variables,DICOPT++ (mixed integer-
nonlinear programming solver using theCPLEX solver andMINOS solver iteratively), andMINOS
(nonlinear programming solver).

4. Examples

As an example we have considered the squeezed state

|A; r, θ〉 = S(r, θ)|A〉 (24)

S(r, θ) = exp[14re
−iθ (a†)2 − 1

4re
iθa2] (25)

withA = 5
√

2(1+ i), r = 0.916,θ = 0. This state has been reconstructed using subsets of the
5× 5 truncated von Neumann lattice shown in figure 1. Optimal selection of three coherent
states and six coherent states from the 25 coherent states in this lattice produced the results
shown in figures 2 and 3 correspondingly, using the normp = 1 (dashed curve),p = 2 (star
curve), andp = ∞ (dash-dot curve). The original state is also shown for comparison (solid
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Figure 2. Construction of the squeezed state described in the text (solid curve) with three optimally
selected coherent states from the truncated von Neumann lattice shown in figure 1. Three norms
have been used:p = 1 (dashed curve);p = 2 (star curve); andp = ∞ (dash-dot curve).

curve). The optimally selected states are shown in figure 1 with a hexagon for case of three
coherent states and a circle for the case of six coherent states.

Figure 4 shows the error of the approximation as a function of the number of coherent
states optimally selected from the 5×5 lattice shown in figure 1. The error of the approximation
is defined as

e = h
Nx∑
j=1

ej (26)

where1x is the discretisation interval i.e. the range of calculation divided by the number of
points (in our caseh = 0.2, Nx = 50). It is seen that as the number of optimally selected
coherent states is reduced from 25 to 12 or 9, the loss of accuracy is insignificant (the error goes
from 0.15 to 0.18 and 0.19, correspondingly). As the number of optimally selected coherent
states is reduced even more, the error increases, quickly. This graph demonstrates the need
for an optimal selection of the basis since in this example the approximation with six coherent
states is almost as good as with 25 coherent states.

Our method uses anM ×K truncated von Neumann lattice ofN = MK coherent states
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Figure 3. Construction of the squeezed state described in the text (solid curve) with six optimally
selected coherent states from the truncated von Neumann lattice shown in figure 1. Three norms
have been used:p = 1 (dashed curve);p = 2 (star curve); andp = ∞ (dash-dot curve).

and optimally selects̄N of them. In the above examples we had fixedN (M = K = 5) and
variedN̄ . In figure 5 we compare two cases with varyingN (N = 25 andN = 9) for fixed
N̄ (N̄ = 3). The 5× 5 von Neumann lattice is the one shown in figure 1, while the 3× 3
truncated von Neumann lattice is

Amn = 2.12m + 0.71ni + (4.95 + 6.36i) m = 0, 1, 2 n = 0, 1, 2. (27)

The caseN = 9 is shown by the dashed curve; the caseN = 25 is shown by the dash-dotted
curve; and the original state is shown in the solid curve. The normp = 1 has been used.

It is seen that although thesamenumber of coherent states has been used in both cases,
the fact that they have been optimally selected from different lattices led to different results.
For a given number of coherent states, optimal selection from a large lattice produces better
results.

In order to clearly show the effect of the optimization procedure, we point out that
in the caseN = 9 and N̄ = 3 discussed above, the program selects the states (m =
0, n = 0), (m = 0, n = 1) and (m = 1, n = 1) from the lattice of equation (27),
and attaches the coefficientsf00 = −0.1987− 0.2124i, f01 = −0.2800− 0.2925i and
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Figure 4. Error (equation (26)) as a function of the number of coherent states optimally selected
from the 5× 5 lattice shown in figure 1. Thep = 1 norm has been used.

f11 = 0.8860 + 0.8843i correspondingly. For comparison we note that equation (4) gives the
valuesf00 = −0.0676+0.1837i,f01 = −0.2123−0.1817i andf11 = 1.0112 correspondingly,
for these coefficients.

Some of the norm 2 results (p = 2) have been difficult to converge with the solvers used.
This can be attributed to the number of conditions in the least-squares problems and the use of
a standard nonlinear optimization solver (MINOS) to solve these subproblems within the mixed
integer-nonlinear programming solver algorithm. The other norm formulations (p = 1,∞)
which we investigated are much more stable and easier to solve. This observations also explain
why the norm 2 results appear to be suboptimal, although from the theoretical point of view
the formulation is convex and hence guaranteed to have a unique globally optimal solution.

5. Discussion and applications to other areas

One of the most important properties of coherent states is the resolution of the identity of
equation (3). Using it, we can expand an arbitrary state in terms of coherent states as in
equation (4). This expansion is exact but contains all coherent states in the complex plane.
Since this basis is highly overcomplete, it is desirable to reduce its size. In [8] the coherent
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Figure 5. Construction of the squeezed state described in the text (solid curve) using three coherent
states optimally selected from: the 5× 5 lattice of figure 1 (dash-dot curve); and the 3× 3 lattice
of equation (27) (dashed curve). Thep = 1 norm has been used.

states on a line in the complex plane have been considered and resolutions of the identity in
terms of these states have been studied. Using them, we can express an arbitrary state as a
line integral of coherent states. This is one approach within the more general framework of
quantum state engineering [9], the aim of which is to construct arbitrary quantum states.

Superpositions of coherent states have been constructed experimentally (in the context of
Schr̈odinger cats). However, if the method of expanding arbitrary states in terms of coherent
states, is going to be useful for quantum state engineering, it needs to employ only a few
coherent states. The expansion of [8] uses an infinite number of coherent states.

In [2], a truncated von Neumann lattice has been used for an accurate construction of
various quantum states. It is practically very important to use small bases in these expansions
and at the same time get accurate results. Optimization techniques reconcile these contradictive
requirements. In this paper, we have translated these problems in a language suitable for the
use of existing optimization techniques and numerical programs. We have found that through
optimization methods a considerable reduction of the size of the basis can be achieved with
effectively no loss in accuracy. Figure 4 demonstrates this point clearly. As the size of the
basis decreases, the error increases very little; up to a certain point (in this case six coherent
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states) below which the error increases significantly.
We have presented our ideas in the context of quantum states in quantum mechanics.

However, their applicability is much more general to any problem where an expansion of
an arbitrary function in terms of Gaussian functions (our coherent states) or other localized
functions (e.g. wavelets), is useful. An example is the area of signal processing where the
expansion of an arbitrary signal in terms of Gaussian signals is known as Gabor expansion
[10] and is used widely.
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